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Abstract

For many years computer graphics has been used in calculus-level classrooms to visualize
diverse mathematical objects. In the two dimensional case, this usually encompasses reproducing
images that are familiar from centuries of masterful art practiced in books and on blackboards.
Unfortunately, in the three dimensional case, many uses are of a disappointingly similar character,
instead of pouncing on the opportunity to get new and deeper insights that previously were beyond
reach. We demonstrate how three dimensional visualization can link together formerly disparately
treated topics, cultivate the central mathematical ideas of lifting and projecting, and foster the
habit of exploring new points of view. This article gives three innovative examples that do the
latter. It challenges the reader to reconsider all situations that involve more than two variables:
maybe there is a better three-dimensional view that is not part of the tradition just because one
could not do it at the time. The examples discussed address constrained optimization problems,
compositions of functions, and the product rule of differentiation.

1 Introduction
For millennia, mathematicians have perfected the art of providing two-dimensional graphical illus-
trations to support abstract reasoning. We are so accustomed to many such classical pictures that we
rarely ask whether there are better alternatives. In the past there were not many choices as pictures of
3D objects are hard to create by hand. By putting 3D graphics at anyone’s fingertips recent computer
technology has obviated the need to make everything two-dimensional. In addition to the aesthetic
aspects, the full 3D view often gives considerably more insight.

This article gives three elementary examples to illustrate this point. The first connects, in a single
picture, the common views of elementary optimization techniques of single and multi-variable calcu-
lus courses. The two others are selected from the many first semester calculus and precalculus topics
that truly involve three variables. We provide 3D views of the product rule and the composition of
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two functions. The readers are invited to find analogous pictures for the chain rule, related rates, and
integration by parts. We propose:

Challenge: Rethink whether each topic that involves three variables would benefit from a 3D
graphical representation.

The pictures presented here cannot do justice to this paradigm. For the most captivating expe-
rience, the student or the reader should rotate the objects himself or herself by simply clicking and
dragging. To facilitate this we include sample commands for MAPLE. But with almost any 3D
graphing program similar images are created just as readily. In order to focus on the central idea, the
following examples employ traditional notation that is familiar from calculus classes. This includes
some common abuse of notation, and we also omit technical discussions of well-known special cases.

This material is an outgrowth of a presentation at the Third Conference on the Teaching of Calculus
(Ann Arbor, Michigan, 1994). In the intervening years, the use of computers for visualizing calculus
concepts has become more routine – but all too often new technology is only used to reproduce the
old images. Rather than just doing with technology what one used to do by hand, the real challenge
is to creatively utilize new technologies to do the things that we never could do before.

2 Constrained optimization
A core topic in calculus is to optimizea function f(x, y) of two variables subject to a constraint
g(x, y) = 0. While other examples provide better pictures, for the sake of argument, consider the
most basic problem of finding the rectangle of maximal area A among all rectangles with perimeter
L = 12.

Fig. 1.a: One side view:
A = x(6− x). Solve dA

dx
= 0

Fig. 1.b: Other side view:
A = (6− y)y. Solve dA

dy
= 0
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Fig. 1.c: The full 3D view:
A = xy, x+ y = 6.

Fig. 1.d: Top view:
Solve ∇⃗f + λ∇⃗g = 0, g = 0

In a typical single variable course, denoting by x and y the lengths of the sides of the rectangle,
the standard procedure is to solve the constraint for one variable, e.g. y = h(x), substitute for
this in the objective function, and calculate the critical points of an unconstrained problem, solving
0 = d

dx
f(x, h(x)). Here, h(x) = 6 − x, A = xy = x(x − 6), and dA

dx
= 0 iff x = y = 3. Of course,

one may as well switch the role of the two variables. In either case one arrives a side view as shown
in Figures 1.a. and 1.b.

A hybrid approach via implicit differentiation is seen less frequently: Equate gx(x, y)+gy(x, y)y
′ =

0 and fx(x, y) + fy(x, y)y
′ = 0 by identifying y′ in both equations and using the constraint. In prac-

tical examples this is often the most efficient method, and is the one that first comes to mind when
confronted with the top-view shown in Figure 1.d. A slightly more formal version of this approach
uses only differentials and algebra. Solve gx(x, y) dx+gy(x, y) dy = 0, fx(x, y) dx+fy(x, y) dy = 0,
and g(x, y) = 0. For an article advocating differentials see [1], but we note that differentials as dual
objects are notoriously harder to correctly visualize.

In a multi-variable calculus course the problem is revisited using Lagrange multipliers: Form
the function F (λ, x, y) = f(x, y) + λg(x, y) and solve the system Fx = Fy = Fλ = 0. In the
example F (λ, x, y) = xy + λ(12 − 2x − 2y), and the critical point x = y = 3 is obtained from
the three simultaneous equations y − 2λ = x − 2λ = 12 − 2x − 2y = 0. Few students make the
connection between the different approaches. It is not enough if the teacher verbally asserts: “These
are simply different points of view of the same problem.” Our pictures prove this claim, taken literally.
Rotating the 3-D computer graphics comes very close to taking the problem into one’s own hands,
and physically rotating it to take different points of view.

Actual teaching experiences have been extremely good: Before introducing Lagrange multipliers
we briefly review the single variable calculus technique, using a simple example. Then we switch on
the projector to show the standard side view. This is a rare instance where it is worth it to prepare
the graphics before class (so that it does not give away the punch-line). A brief discussion follows
why this can’t be the full picture (the graph of a function of two variables is a surface). Then click on
the graphics and rotate it into a general position as in Figure 1.c., exposing the full 3D object behind
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the earlier seen picture. By now, well into the multi-variable course, the students are used to rotating
graphs, and after further rotation quickly obtain the other side view, which corresponds to eliminating
x and considering A = y(6− y). The following fundamental observation deserves some reflection:

Fact: The graphical analogue of (the algebraic operation of) eliminating a variable from a
system of equations is rotating a graph until the corresponding axis disappears from view (as it
becomes the line of sight).

If a system cannot be solved uniquely for a variable, the corresponding graphical object violates
some liberal variation of the vertical or horizontal line test.
After looking at the box from one side and then from another side, it is natural to also look at it

from the top. The students do this all the time, in particular, when introduced to multi-variable cal-
culus via the extensive use of contour diagrams that is suggested by many client disciplines, compare
the modern calculus text [2].

It is important that the plot style is chosen to show contours. The usual picture for introducing
Lagrange multipliers arises: The maximum occurs at the point where the graph of the constraint is
tangent to the level curves of the objective function. It is a worthwhile exercise to ask the students to
explicitly write out the details behind this argument. Many students find it challenging to formulate
the contrapositive: The maximum cannot occur at a point where the graph of the constraint crosses
the level curves transversally. The most direct algebraic characterization of this point is in terms
of the equations obtained above via implicit differentiation, liberally writing y′ = y′. The usual
algebraic algorithm in terms of Lagrange multipliers, that is suited for higher dimensional cases, this
characterization is rephrased in terms of collinear gradients ∇⃗f and ∇⃗g.

The complete picture actually involves the graph of the function g(x, y) as well. Note that in
practical problems f and g often have different dimensions (here one is a length and the other is an
area). Consequently the full picture should have four axes. A nice way is to encode the function
g(x, y) using color. In MAPLE use the option color=g(x,y) in the plot3d command.

Alternatively, ignoring this remark, one may overlay two surfaces. This is helpful when discussing
the relation to the dual problem, i.e. minimizing g subject to f = const. To emphasize that in general
f and g do not take any commensurate values, it is a good idea to space the surfaces vertically far
apart from each other. The key ingredient to make the method work, of course, is that the gradients
both lie in the same xy-plane on the bottom, together with all the (projected) contours. Whereas
the previous picture showed one fixed curve together with one family of contours, now one has two
families of contours. Correspondingly, this leads one to correctly characterize the critical point by
the linear dependence of the gradients, i.e., points (x, y) for which there exists λ0, λ1 ∈ R such that
λ0∇⃗f + λ1∇⃗g = 0.

More abstract approaches to develop the Lagrange multiplier method are appropriate in advanced
settings, compare [3]. But at an elementary level this usual picture is more redeeming. Moreover,
it offers a hands-on approach to deal with the abnormal case, when the extremum occurs at a point
where the gradient of g vanishes. It is hard for anyone who has learned the technique from the
above pictures to miss the abnormal case. Indeed, correctly, the Lagrangian should be written as
F (λ0, λ, x, y) = λ0f(x, y) + λg(x, y). Yet most traditional calculus textbooks on the market in the
United States are quite careless, tacitly assuming that one can choose a nonzero λ0 = 1 with technical
remarks about the other case nicely put a places where most readers do not really notice them. Thus it
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is of little surprise that student who learnt from such books later make the common mistake of missing
abnormal minimizers in advanced settings. We believe that by firmly basing the method of Lagrange
multipliers on this graphical approach such mistakes can be largely avoided.

Extension
A closely related but more familiar picture arises in an important special case of the chain rule. Let
r⃗ : R → R2 describe a planar curve, f : R2 → R a scalar function of two variables. Set F = f ◦ r⃗.
Then F ′ =

(
∇⃗f ◦ r⃗

)
· v⃗ where v⃗ = r⃗ ′ denotes the velocity vector. While the picture is essentially

the same, the interpretations, e.g. walking over a hill, or temperature as a function of location as a
function of time, are different. Good choices for the hill are given by bounded rational functions. A
nice picture results from f(x, y) = 1

1+x2+y2
and (x(t), y(t)) = (t, 1− t2).

3 The product rule
The traditional picture to support the algebraic manipulations for the product rule is the front view
shown in Figure 2.a. While many standard textbooks do not have any illustrations for this at all,
there are several that at least show this picture, e.g. [2, 5]. This is a prime example for the price
traditional mathematics pays for reduction to two-dimensional illustrations. This is perfectly sound
from an algebraic perspective working with differentials d(u · v) = du · v + u · dv, compare e.g. [1].
But most first-year calculus students feel less comfortable with differentials than with differential
quotients. In our experience, even though the independent variable occurs nowhere in the diagram,
very few students dare to ask for the relation of the picture to the analytic expressions in the product
rule d

dx
(f(x) · g(x)) = df

dx
(x) · g(x) + f(x) · dg

dx
(x).

Fig. 2.a: The traditional front-view Fig. 2.b: The side view: dv = g′(x) dx
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Fig. 2.c: The top view: du = f ′(x) dx. Fig. 2.d: The full 3D view

The 3D resolution is obvious: Three variables (the independent x, and the dependent u and v)
deserve three axes. The side and top view shown in Figures 2.b and 2.c.show the graphs of u and
v as functions of x. Students know where to find dx, du and du

dx
, or dx, dv and dv

dx
in these familiar

views. Click and drag to rotate into full 3D view shown in Figure 2.d. Carefully keeping track of all
quantities, slowly continue to rotate until the x direction disappears from view. Alternatively, again
play the game of starting with the uv-view as seen in the text book. Ask the class: “Where is x?”,
then click and drag to “tell the story behind the flat picture”.

Extension
Other occasions where 3D pictures arise from one independent and two dependent variables are re-
lated rates and implicit equations. The proverbial ladder leans against a wall and slides down. A two
dimensional animation is an exciting starting point. Overlaying the frames on top of each other cor-
responds to a third (time-) axis pointing towards the observer. A critical step is to go from the curves
(t, x(t), 0) and (t, 0, y(t)) traced by the foot and bottom, to the mathematically more interesting curve
(t, x(t), y(t)).

Three-dimensional graphs are more commonly seen when graphing implicit equations using pa-
rameterizations. The standard picture arises from the circle x2 + y2 = 1 parameterized via x = cos t
and y = sin t. The 3D picture is the helix (t, cos t, sin t). Reparameterizations as (t, cos

√
t, sin

√
t)

or (t, cos t2, sin t2) already illustrate the usefulness of the full 3D view (helices with nonconstant
pitches), and of the side views (e.g. illustrating dx

dt
and dy

dt
graphically).

It is only a small step from such parameterized curves to autonomous second order differential
equations: The side view shows the solution x = sin t of the initial value problem ẍ + x = 0,
x(0) = 0, ẋ(0) = 1. Some like to overlay the other side view showing ẋ = cos t, but this may
actually hinder understanding. To graphically represent the differential equation, we first rewrite it
as a first order system ẋ = y, ẏ = −x, and then draw the matching field plot in the xy-plane. The
3D view of the solution curve is the same helix as above. To avoid cluttering the picture we prefer
to draw the arrows for the vector field only in the t = 0 plane. A far more advanced task is to get
a similar picture for nonautonomous equations. The key is to draw the field on only a few planes
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t = const (that are spaced sufficiently far apart), and to code them with color. (Other uses for this
picture are demonstrations of controlled or parameter-dependent differential equations; this will be
the subject of a forthcoming article). A prime example for an intensive use of closely related graphical
representations is [4]; however, there, in place of the 3D picture, the corresponding projections onto
the coordinate planes are drawn in one combined diagram.

4 Composition of functions
In our experience most undergraduate students have a very limited understanding of functions as
operators, and confuse the output y = f(x) of a function f (given the input x) with the function
itself. Many textbooks even call y a function of x. While convenient at some times, it causes much
trouble at others. With the traditional emphasis on algebraic manipulations, it comes as no surprise
when students interpret symbols like y = sinx2 as a juxtaposition of the symbols sin and x2, and
even mistake it for a product. These are often the same students who say “f x” in place of “f of/at x”,
and who continue writing y = fx. Writing the derivative as y′ = cos 2x and the complete inability
of finding the graph of the composition of two functions that are presented graphically are almost
necessary consequences. (E.g. provide the graphs of f(u) = |1−|u−1|| and g(x) = |3−x|, and ask
for the graph of the composition f ◦ g.) Few students have any idea how to even get started, without
a graphing calculator, to describe the graphs of F (x) = esinx and G(x) = sin ex.

A fundamental task for precalculus students is to compose two given tables of function values
(preparing a table of the values of the composition). Some texts support the reasoning by drawing
three parallel (!) axes representing the variables x, u and y. The usefulness of this representation is
primarily limited to compositions of monotone functions and to local considerations (local linearity,
chain-rule).

For a hands-on 3D graphical exercise put the graph of u = g(x) flat on the table. Starting at
(x0, 0, 0), go to the graph of g at (x0, g(x0), 0) and over to the u-axis, i.e. to (0, u0, 0) = (0, g(x0), 0).

Using a second piece of cardboard adjoin a vertical graph of y = f(u), with the two u axes
agreeing. Go from (0, u0, 0) to (0, u0, f(u0)) on the second graph. This laborious hands-on experience
with cardboard is much accelerated by 3D computer graphics.

Fig. 3.b: The top view: u = g(x) Fig. 3.b: The side view y = f(u)
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Fig. 3.c: The full 3D view Fig. 3.d: The frontal view: y = f(g(x))

Denoting the composition by F = f ◦ g, one has several options: The space-curve t → (t, g(t), F (t))
is difficult to see (in some cases a point-plot is more helpful). The graphs of the equations u =
g(x) and f = g(u) maybe interpreted as cylinders with the space-curve as their intersection. In
our experience, the resulting surface plots are often unsatisfactory. Plotting only a judiciously chosen
truncation of either surface is much more informative. Here we chose to include (a minor modification
of) the “lines of reasoning” described in the hands-on illustration using card-board.

As so often in 3D graphics, here too, oscillatory trigonometric and bounded rational functions
are more suitable than polynomial functions. However, due to popular demand, we illustrate the
composition of g(x) = x2 and f(u) = 2 + sinu. The most delicate choice is the restriction of the
domain to obtain just enough oscillations. Similar to the case of sin ex (left to the reader), restricting
x so that no more than three full periods of the sine are shown seems to give the most gratifying
pictures.

As before, the side and the top view in Figures 3.a and 3.b show the basic graphs of y = f(u) and
u = g(x). Then rotate into full 3D view as in Figure 3.c. Continue to slowly rotate until the u-axis
disappears from view, corresponding to elimination of u from the two equations, compare Figure 3.d.
The desired graph of y = F (x) remains. The most memorable view keeps the u-direction just barely
visible. In MAPLE it seems best to always use the “BOXED”-option for the axes.

Extension
Closely related to this picture are the chain-rule and the substitution-technique for integration. For

the first, connect two points on the space curve by a secant line, and adjoin line segments parallel to
the coordinate axis. Or draw a right three-sided pyramid with two vertices on the space-curve and
three sides representing ∆x, ∆u, and ∆v. The other sides approximate the arc lengths of the graphs
of f , g and F .

Finally, one may illustrate the Riemann sums corresponding to the definite integrals transformed
into each other by a change of variable. This picture in three dimensions takes a little more effort
than the previous ones: For an integrand J(x)dx = f(g(x))g′(x)dx use three axes to represent x,
u′ = g′(x) (!) and y = F (x) = f(g(x)). Considering volumes of rectangular boxes (instead of areas
of rectangles) we may group volume = (width × depth) × height = width × (depth × height). Here
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∆u ≈ g′(x) · ∆x and J(x) = f(g(x)) · g′(x) are represented by the areas of different rectangular
sides of the individual boxes.

5 Conclusion
For millennia mathematicians have gotten by without extensive 3D graphics. Yet there is every reason
to believe that future users of mathematics can do much more by exploiting 3D visualization. There
are compelling reasons to consider this approach as more than a entertaining diversion that keeps a
few students more excited by being new, beautiful, and fun:

Three dimensional visualizations

• provide more insight,

• link together different views and techniques,

• practice the essential mathematical techniques of projecting and lifting,

• demonstrate abstractions and finding new illuminating views as central
features of mathematics.

We hope that these and similar graphics eventually make it into standard textbooks. Until then,
instructors can still do magic and present new ways of looking at mathematics. This may leave, on
many students, a lasting impression that new, beautiful faces of mathematics are yet to be discovered,
even at the calculus level! Many similar 3D examples need to be explored and many completely new
uses of technology for ancient topics are waiting to be discovered.
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6 Supplementary Electronic Materials
Maple code
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7 Appendix
Graphics similar to the ones presented may be generated with almost any graphing package. Here
we give sample MAPLE commands that may be used to generate illustrations similar to the ones
presented. More elaborate commands are available in the MAPLE worksheet. These commands
assume MAPLE release 13, but with only minor changes will also work in most recent versions.

Constrained optimization: The color essentially codes the fourth variable related to the perime-
ter constraint – the contours of the constraint function are represented by colors.

with(plots):
f:=(x,y)->x*y;
h:=x->6-x;
F:=x->f(x,h(x));
ss:=spacecurve([x,h(x),F(x)],x=0..6,color=blue,thickness=3):
xe:=solve(diff(F(x),x)=0):
This simplified assignment assumes that there is a unique critical point.
yc:=solve(f(x,y)=F(xe),y):
crit:=spacecurve([x,yc,F(xe)],x=3/2..6,color=red,thickness=3):
surf:=plot3d(f(x,y),x=0..6,y=0..6,color=h(x)-y,

style=patchcontour,contours=[$1..12]*∼3):
display({crit,ss,surf},labels=[x,y,A],

axes=boxed, orientation=[-90, 0]);
display({crit,ss,surf},labels=[x,y,A],

axes=boxed, orientation=[ 0,90]);
display({crit,ss,surf},labels=[x,y,A],

axes=boxed, orientation=[-70,70]);

Product rule: The functions u and v for width and length may be changed easily. The picture
consists of two rectangles, three space curves,and numerous line segments as visual aids. The space
between the rectangles may be easily varied.

with(plots):
u:=x->1/(2-x):
v:=x->x*(1+x)/2:
R:=(x,cc)->polygonplot3d([[x,0,0],[x,u(x),0],[x,u(x),v(x)],

[x,0,v(x)]],color=cc):
ss:=spacecurve({[x,u(x),v(x),x=0..1],

[x,0,v(x),x=0..1],
[x,u(x),0,x=0..1]
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[x, 0, 0,x=0..1]},
color=pink,thickness=3):

hh:=a->pointplot3d( [[1,u(a),v(1)],[1,u(a),v(a)],[1,u(1),v(a)]],
style=line, color=gold, thickness=2 ):hh:=a->display(

pointplot3d([[1,u(a),0],[1,u(a),v(1)]],
style=line, color=gold, thickness=2),

pointplot3d([[1,0,v(a)],[1,u(1),v(a)]],
style=line, color=gold, thickness=2)):

kk := a -> display(
pointplot3d( [[a,u(a),v(a)],[1,u(a),v(a)]],

style=line, color=cyan, thickness=2 ),
pointplot3d( [[a, 0,v(a)],[1, 0,v(a)]],

style=line, color=cyan, thickness=2 ),
pointplot3d( [[a,u(a), 0],[1,u(a), 0]],

style=line, color=cyan, thickness=2 ),
pointplot3d( [[a, 0, 0],[1, 0, 0]],

style=line, color=cyan, thickness=2 ) ):
prodrule:=(a,c1,c2)->display([R(a,c1),R(1,c2),ss,kk(a),hh(a)],

axes=normal, labels=[x,u,v]):
display( prodrule(0.8,green,blue), orientation=[160,75] );
display( prodrule(0.8,green,blue), orientation=[-90,0] );
display( prodrule(0.8,green,blue), orientation=[-90,90] );

Composition: The tricky part is to select suitable plot ranges and a suitable viewing angle, as
well as adding visual aids such as the truncated vertical cylinder. The reader is invited to experiment
with other cylinders and other truncations.

with(plots):
g:=t->t̂ 2;
f:=t->2+sin(t);
a:=sqrt(13*Pi/2);
N:=30:
ss:=spacecurve([t,g(t),f(g(t))],t=-a..a,

color=red,numpoints=200,thickness=2):
hh:=xk->pointplot3d([[xk,0,0],[xk,g(xk),0]],

color=green,style=line,thickness=2):
vv:=xk->pointplot3d([[xk,g(xk),0],[xk,g(xk),f(g(xk))]],

style=line,thickness=2):
xx:=[$-30..30]*∼(a/N):
display([hh (xx)[],vv (xx)[],ss],labels=[x,y,z],

axes=boxed,orientation=[0,90]);
display([hh (xx)[],vv (xx)[],ss],labels=[x,y,z],

axes=boxed,orientation=[-90,90]);
display([hh (xx)[],vv (xx)[],ss],labels=[x,y,z],

axes=boxed,orientation=[55,60]);
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